760 research outputs found

    Far-infrared photometry of compact extragalactic sources: OJ 187 and BL Lac

    Get PDF
    The 50 and 100 micron emissions of OJ 287 were detected and upper limits for BL Lac were obtained. These first measurements of two BL Lac objects in the far-infrared show them to be similar to the few quasars previously observed in the far-infrared. In particular, there is no evidence for significant dust emission, and the lambda approximately 100 micron flux density fits on a smooth line joining the near-infrared and millimeter continuum fluxes. The implications of the results for models of the sources are discussed briefly

    An infrared study of the bi-polar outflow region GGD 12-15

    Get PDF
    Infrared observations from 1 to 100 microns are presented for the region associated with a bipolar CO outflow source near the nebulous objects GGD 12 to 15. A luminous far-infrared source was found associated with a radio-continuum source in the area. This object appears to be a compact HII region around a nearly main-sequence BO star. A faint 20 micron source was also discovered at the position of an H2O maser 3O deg northwest of the HII region. This object appears to be associated with but not coincident with a 2 micron reflection nebula. This structure serves as evidence for a non-spherically symmetric, possibly disk-like dust distribution around the exciting star for the maser. This object probably powers the bi-polar CO outflow although its luminosity is less than 10% that of the star which excites the compact HII region. A number of other 2 micron sources found in the area are probably members of a recently formed cluster

    Far-infrared observations of young clusters embedded in the R Coronae Austrinae and RHO Ophiuchi dark clouds

    Get PDF
    Multicolor far infrared maps in two nearby dark clouds, R Coronae Austrinae and rho Ophiuchi, were made in order to investigate the individual contribution of low mass stars to the energetics and dynamics of the surrounding gas and dust. Emission from cool dust associated with five low mass stars in Cr A and four in rho Oph was detected; their far infrared luminosities range from 2 far infrared luminosities L. up to 40 far infrared luminosities. When an estimate of the bolometric luminosity was possible, it was found that typically more than 50% of the star's energy was radiated longward of 20 micrometers. meaningful limits to the far infrared luminosities of an additional eleven association members in Cr A and two in rho Oph were also obtained. The dust optical depth surrounding the star R Cr A appears to be asymmetric and may control the dynamics of the surrounding molecular gas. The implications of the results for the cloud energetics and star formation efficiency in these two clouds are discussed

    Are young stars always associated with cold massive disks? A CO and millimeter interferometric continuum survey

    Get PDF
    The results of a combined millimeter-spectral-line and continuum survey of cold far-infrared sources selected to favor embedded young stars in the Galaxy are presented. The spectral-line observations were performed with the 5 meter antenna of the University of Texas Millimeter-Wave Observatory. High resolution continuum observations were obtained with the Owens Valley (OVRO) Millimeter-Wave Interferometer. The goal of the survey was to gain insight into the mass, temperature, and distribution of cold dust which envelopes stars during the earliest stages of their evolution. The first phase of our survey involved 1.2 arcmin resolution observations of CO-12 and CO-13 emission lines toward each source. All but two sources had detectable CO emission. We found that 40% of the sources appear to be associated with star formation as evidenced by the presence of enhanced CO-12 line widths or broad wings. At least five of these objects are associated with bipolar molecular outflows. The second phase of our survey involves high resolution 2.7 mm continuum observations with 3 interferometer baselines ranging from 15 to 55 m in length. Preliminary results indicate that about 25% of the sources in our sample have detectable continuum emission on scales less than 30 arcsec. The high percentage of sources with enhanced CO-12 line widths or broad wings indicates that a significant fraction of our samples, 40%, are likely to be young stars. The lower detection percentage in the continuum observations, 25%, suggest that such objects are not always surrounded by large concentrations of gas and dust. The continuum detection percentage for actual dust emission could be lower than that given above since emission from ionized gas could be responsible for the observed 2.7 mm emission in some objects. To get an understanding of the type of object detected in our survey, a map of one of the survey sources, L1689N, has been made using the OVRO mm interferometer

    A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core

    Full text link
    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the Rho Ophiuchi cloud are presented. Data were acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and LWS instruments, at 0.25 arcsec and 0.25 arcsec resolutions, respectively. Of 172 survey objects, 85 were detected. Among the 22 multiple systems observed, 15 were resolved and their individual component fluxes determined. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend ~400,000 yr in the Flat Spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects, and is found to occur for all SED classes with optically thick disks. Large-amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. Although a general trend of mid-infrared excess and NIR veiling exists proceeding through SED classes, with Class I objects generally exhibiting K-veilings > 1, Flat Spectrum objects with K-veilings > 0.58, and Class III objects with K-veilings =0, Class II objects exhibit the widest range of K-band veiling values, 0-4.5. However, the highly variable value of veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking, and is direct observational evidence for highly time-variable accretion activity in disks. Finally, by comparing mid-infrared vs. near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk clearing mechanisms are explored. The results are consistent with disk clearing proceeding from the inside-out.Comment: 18 pages + 5 tables + 7 figure

    Clifford algebras and new singular Riemannian foliations in spheres

    Get PDF
    Using representations of Clifford algebras we construct indecomposable singular Riemannian foliations on round spheres, most of which are non-homogeneous. This generalizes the construction of non-homogeneous isoparametric hypersurfaces due to by Ferus, Karcher and Munzner.Comment: 21 pages. Construction of foliations in the Cayley plane added. Proofs simplified and presentation improved, according to referee's suggestions. To appear in Geom. Funct. Ana

    Detection of Molecular Hydrogen Orbiting a "Naked" T Tauri Star

    Get PDF
    Astronomers have established that for a few million years newborn stars possess disks of orbiting gas and dust. Such disks, which are likely sites of planet formation, appear to disappear once these stars reach ages of 5-10 times 10^6 yr; yet, >= 10^7 yr is thought necessary for giant planet formation. If disks dissipate in less time than is needed for giant planet formation, such planets may be rare and those known around nearby stars would be anomalies. Herein, we report the discovery of H_2 gas orbiting a weak-lined T Tauri star heretofore presumed nearly devoid of circumstellar material. We estimate that a significant amount of H_2 persists in the gas phase, but only a tiny fraction of this mass emits in the near-infrared. We propose that this star possesses an evolved disk that has escaped detection thus far because much of the dust has coagulated into planetesimals. This discovery suggests that the theory that disks are largely absent around such stars should be reconsidered. The widespread presence of such disks would indicate that planetesimals can form quickly and giant planet formation can proceed to completion before the gas in circumstellar disks disperses.Comment: latex 12 pages, including 1 figur

    Young Low-Mass Stars and Brown Dwarfs in IC 348

    Get PDF
    I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (1-10~Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarf-like, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 A are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources. An H-R diagram is constructed for the low-mass population in IC 348 (K6-M8). The presumably coeval components of the young quadruple system GG~Tau (White et al.) and the locus of stars in IC 348 are used as empirical isochrones to test the theoretical evolutionary models. For the models of Baraffe et al., an adjustment of the temperature scale to progressively warmer temperatures at later M types, intermediate between dwarfs and giants, brings all components of GG~Tau onto the same model isochrone and gives the population of IC 348 a constant age and age spread as a function of mass. When other observational constraints are considered, such as the dynamical masses of GM~Aur, DM~Tau, and GG~Tau~A, the models of Baraffe et al. are the most consistent with observations of young systems. With compatible temperature scales, the models of both D'Antona & Mazzitelli and Baraffe et al. suggest that the hydrogen burning mass limit occurs near M6 at ages of <10 Myr. Thus, several likely brown dwarfs are discovered in this study of IC 348, with masses down to ~20-30 M_J.Comment: 23 pages, 9 figures, accepted to Ap

    Budget projections and clinical impact of an immuno-oncology class of treatments: Experience in four EU markets

    Get PDF
    Background Immunotherapies have revolutionized oncology, but their rapid expansion may potentially put healthcare budgets under strain. We developed an approach to reduce demand uncertainty and inform decision makers and payers of the potential health outcomes and budget impact of the anti-PD-1/PD-L1 class of immuno-oncology (IO) treatments. Methods We used partitioned survival modelling and budget impact analysis to estimate overall survival, progression-free survival, life years gained (LYG), and number of adverse events (AEs), comparing “worlds with and without” anti-PD-1/PD-L1s over five years. The cancer types initially included melanoma, first and second line non-small cell lung cancer (NSCLC), bladder, head and neck, renal cell carcinoma, and triple negative breast cancer [1]. Inputs were based on publicly available data, literature, and expert advice. Results The model [2] estimated budget and health impact of the anti-PD-1/PD-L1s and projected that between 2018−2022 the class [3] would have a manageable economic impact per year, compared to the current standard of care (SOC). The first country adaptations showed that for that period Belgium would save around 11,100 additional life years and avoid 6,100 AEs. Slovenia - 1,470 LYGs and 870 AEs avoided; Austria - respectively 4,200, 3,000; Italy – 19,800, 6,800. For Austria, the class had a projected share of about 4.5 % of the cancer care budget and 0.4 % of the total 2020 healthcare budget. For Belgium, Slovenia, and Italy - respectively 15.1 % and 1.1 %, 12.6 %, 0.6 %, and 6.5 %, 0.5 %. Conclusion The Health Impact Projection (HIP) is a horizon scanning model designed to estimate the potential budget and health impact of the PD-(L)1 inhibitor class at a country level for the next five years. It provides valuable data to payers which they can use to support their reimbursement plans
    corecore